If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+3t-10=0
a = 5; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·5·(-10)
Δ = 209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{209}}{2*5}=\frac{-3-\sqrt{209}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{209}}{2*5}=\frac{-3+\sqrt{209}}{10} $
| 8/7t+1/3t-27=17 | | 4/9=x+3/45 | | −81+x2=0 | | 1/2(4w+6)=1/3(6w+9)2/1(4w+6)=3/1(6w+9) | | (6x+7)(x-5)=-55 | | x+17=5x-31 | | 3x+x+7=8 | | 5X+6x-11=2x+7 | | 3x2+6x=0 | | 28=4=3(t+5) | | 2/3(x-6)+1=2x | | (2x-6)3=6 | | 2x+5/6=x/8 | | 2x=5/6=x/8 | | x²+7x+11=0 | | 2/3x+1/3=5/6 | | -11w-35=2w+4 | | 4-2c=-2(c=-1;c=3;c=4) | | 2t-4=3-5t | | 12w+15w-7+6=-2w+6-7 | | y+(–6)=–9 | | (2x+8)^2=100 | | 13-7x=6(1-2x)-2x | | 16+5p=12+5p+4 | | 3x2+18x+36x=9 | | 3x(x+1)+x2-1=0 | | 4x/5+1=1/3 | | |m=3|=7 | | 41x-33-25x=-146 | | y/5+7=3 | | 7b-4+4b=62(b7;b=6) | | 4x-3/5=2=5 |